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Given discrete degrees of freedom �spins� on a graph interacting via an energy function, what can be said
about the energy local minima and associated inherent structures? Using the lid algorithm in the context of a
spin glass energy function, we investigate the properties of the energy landscape for a variety of graph
topologies. First, we find that the multiplicity Ns of the inherent structures generically has a log-normal
distribution. In addition, the large volume limit of ln�Ns� / �ln Ns� differs from unity, except for the Sherrington-
Kirkpatrick model. Second, we find simple scaling laws for the growth of the height of the energy barrier
between the two degenerate ground states and the size of the associated valleys. For finite connectivity models,
changing the topology of the underlying graph does not modify qualitatively the energy landscape, but at the
quantitative level the models can differ substantially.
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I. INTRODUCTION

Graphs and networks are a subject of study on their own,
and more recently the possibility of doing statistical mechan-
ics on these kinds of structures has been investigated. In
many of the corresponding models, even though the local
minima of the energy function proliferate, one knows little
about their numbers or about their organization. Such prop-
erties are usually studied within the “energy landscape” para-
digm which embodies both energetic and entropic effects. In
fact, a complete knowledge of this landscape tells one every-
thing about low energy excitations; that kind of information
can be precious for understanding both equilibrium and out
of equilibrium low temperature properties. This is especially
true for “complex” systems that exhibit glassy behavior;
these arise in many subjects of research, ranging from mate-
rial science to protein folding.

Our purpose here is to find out how the “shape” and the
scaling properties of such energy landscapes depend on the
structure of the underlying graph when the Hamiltonian
function is of the spin glass type. For this purpose, we shall
consider four types of random graphs �cf. Refs. �1–4��. Pre-
vious studies have considered the thermodynamics of these
systems: at high temperature the system is paramagnetic, and
at low temperature there is a spin glass phase in which the
magnetizations of the spins freeze in apparently random di-
rections. However, relatively little attention has been put into
energy landscape questions when the underlying graphs are
random. In particular, nearly all previous landscape work on
our classes of graphs has been limited to the Sherrington-

Kirkpatrick �SK� case �4�: the inherent structures �referred to
as metastable states in the spin glass community� have been
tackled analytically �5�, and barrier sizes have been consid-
ered indirectly, either via free-energy barriers near the critical
temperature �6�, or by numerical studies of relaxation kinet-
ics in Monte Carlo simulations �7,8�. Finally, there is very
little work on the size of the ground-state valleys associated
with the configurations that are reachable when staying be-
low a given barrier. For all of our random graph ensembles,
we shall first consider all configurations, enumerating the
inherent structures as a function of their energy. We shall
also use the lid algorithm �9–11� to obtain all configurations
connected to the ground state while staying below a given
energy; this gives the barrier to go from the ground state to
its inverted pair and the size of the associated basin. In spite
of the modest graph sizes considered, a considerable amount
of information on these observables �and in particular their
scaling laws� can be reliably extracted.

The paper is organized as follows. The models are defined
in Sec. II. Then we examine all the local minima of the
Hamiltonian and study their statistics �Sec. III�. In Sec. IV
we investigate in detail the scaling of the energy barrier sepa-
rating the two degenerate ground states of these systems. We
also extract the size of the valley around each ground state.
We conclude in Sec. V.

II. MODELS

A. Geometry: Random graphs

A first component of our models consists of a graph on
whose N vertices the spins will reside. We consider four
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classes of graphs with markedly different topologies.
�1� Random k-regular �KR� graphs, where the degree

�connectivity� of each node is fixed to k.
�2� Erdös-Rényi �ER� graphs, where each edge is put

down with probability p=� /N; as a result, at large N, the
degree of a vertex is a Poisson distributed variable of mean
�.

�3� Barabasi-Albert �BA� scale-free graphs generated by
the usual growth process with the preferential attachment
property �12�. Here, at large N, the degree distribution has a
fat tail. In contrast to the previous graphs, the graphs in this
class are highly inhomogeneous.

�4� Complete �i.e., fully connected� graphs. Here, the
number of edges is no longer linear in N, but quadratic.

B. Matter: Frustrated Ising spins

To each edge ij of the underlying graph, we indepen-
dently assign a weight Jij according to a distribution symme-
trized about 0, so both signs arise with equal probability.
These elements, i.e., the random edges and their associated
weights Jij, define the system’s “quenched disorder.” The
statistical mechanics problem arises when one assigns de-
grees of freedom to each site and has them interact. Here we
put an Ising spin �i on each site i; the system’s Hamiltonian
is taken to be

H���i�� 	 − 

�ij�

Jij�i� j , �1�

where the sum runs over all pairs of sites connected by an
edge of the graph. If not stated otherwise the weights Jij are
generated from a Gaussian distribution. This Hamiltonian de-
fines a spin glass, the frustration coming from the fact that in
general not all terms in the energy function can be simulta-
neously at their minimum. There is an obvious global Z�2�
symmetry corresponding to flipping simultaneously all the
spins. Finally, because the Jij are identical independently dis-
tributed and continuous random variables, generically there
are just two degenerate ground states �related by a global
spin flip�.

We shall be interested in the large N limit, in which case
it is appropriate to keep the system’s energy extensive. For
instance in the SK model �4� one sets var�Jij�=O�1/N�.
More generally, if the mean connectivity grows, we want to
keep the energy density from diverging; in all that follows
we shall thus take

var�Jij� =
J2

�k�
, �2�

where �k� is the average graph degree. This choice of scale
eliminates trivial differences between the values of the same
observables in distinct models, allowing for a more direct
comparison.

C. Algorithmic procedures

The 2N configurations of the spin glass are conveniently
represented by vertices of an N-dimensional Boolean hyper-
cube: each vertex is identified by a binary number

0 , . . . ,2N−1 of N bits, a bit value of 1 �0� at the ith position
corresponding to the ith spin being up �down�. Neighbor ver-
tices differ in exactly one bit �see Fig. 1, where the case N
=3 is illustrated�. To each configuration �vertex of the hyper-
cube� we associate the energy calculated from the Hamil-
tonian �1�. The set of vertices of the Boolean hypercube is
our configuration space; these and their associated energies
define an energy landscape, the object of our study. If a ver-
tex has an energy strictly lower than that of all of its nearest
neighbors, the configuration is “one-spin-flip stable” and
hereafter will be referred to as an inherent structure. �As
mentioned previously, such configurations are sometimes
called “metastable states.”� We use this vocabulary, proper to
landscape studies, in the spin glass context. Note that no
gradient algorithm �like those refered to when inherent struc-
tures were originally defined on systems with continuous
variables� will be employed in this work.

One instance of a problem is created by generating a ran-
dom graph in the desired class with N vertices followed by
the generation of the set of weights Jij. The energy landscape
of that instance is then probed using algorithms which exam-
ine all configurations, their energies, etc. The process is then
repeated for as many instances as possible so statistical prop-
erties can be inferred. Finally, one studies the N dependence
to extract the large N scaling laws.

For N�32, a single PC machine word suffices to store the
whole bit sequence representing a configuration on the Bool-
ean hypercube, and furthermore many of the operations on
configurations are easily implemented as binary operators on
the corresponding machine words. In practice, N�30 turns
out to be a natural performance limit for our programs since
for larger N the enumeration of all 2N configurations takes
too much computation time.

The exhaustive enumeration of all inherent structures is in
principle straightforward. On a 2 GHz PC, it requires a few
hundred seconds of CPU time for a single instance of 30
spins. The determination of the height of the energy barrier
separating the two degenerate ground states is more time
consuming. We use for this purpose a variant of the lid algo-
rithm �13�. Starting from just one of the two degenerate
ground states, one iteratively steps to neighboring configura-
tions as long as their energy is below a prescribed “lid”
value. Using a pictorial analogy, one can imagine water
spreading out in a mountainous landscape: Given the source
at the chosen ground state, the water will “wet” neighboring
sites of the hypercube iteratively as long as their energy is
below that of the lid. Following this process, the water front

FIG. 1. Boolean �hyper�cube representing the possible configu-
rations of a three-spin system �N=3�.
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progresses continuously, submerging successive sites until a
pool is formed. There exists a critical value of the lid beyond
which the water can pour into the basin belonging to the
mirror ground state. This is the barrier we shall be investi-
gating. The computer program calculates not only the height
of the barrier, but also the area of the pool �the number of
wet sites� just before the leaking begins, and the Hamming
distance from the source to the pass or passes leading to the
mirror basin. We refer to this basin as the ground-state val-
ley.

The time needed to execute this code for one instance of
30 spins takes from a few hundred to several thousand sec-
onds and strongly depends on the geometry of the model. For
example, for BA graphs it is about 3300 s. This time is even
longer for regular graphs with k=2: the ground-state valley is
often very large and the algorithm needs much time to fill it
and to reach the pass leading to the other ground state.

III. INHERENT STRUCTURES

A. The case of ring geometry

We first consider the case of ring geometry as it will allow
us to understand the generic behavior of most of the other
models. We thus consider a graph that is a ring with N spins
and periodic boundary conditions: this corresponds in fact to
a particular �k=2�-regular graph and it is easy to see that the
properties we shall obtain are also those of this class of
graphs �where one generally has several rings�.

A configuration ��i�i=1,. . .,N is an inherent structure if and
only if each of its spins is parallel to its local field. To de-
scribe such a configuration, it is convenient to focus on

x�i,i + 1� = �iJi,i+1�i+1. �3�

When x�i , i+1��0, the bond �i , i+1� is satisfied, otherwise it
is unsatisfied. An unsatisfied bond corresponds to having a
domain wall �after resorting to a gauge transformation�. Note
that because of the periodic boundary conditions imposed,
the number of domain walls in all configurations has the
same parity as in the ground state.

In an inherent structure, if x�i , i+1��0, then necessarily
x�i−1, i�� �x�i , i+1���x�i+1, i+2�. These conditions are
equivalent to having �i� �Ji−1,i�� �Ji,i+1�� �Ji+1,i+2�, plus �ii� the
two neighboring bonds of the unsatisfied bond �i , i+1� must
be satisfied. Let M be the number of bonds �i , i+1� for which
these last two properties hold. Then, there are M possible
binary choices �either passing or not passing a domain wall
through each of the bonds�, leading to a number of inherent
states Ns=2M, a result derived over two decades ago �14,15�.

For any given instance of the Jij, one can easily determine
the set of bonds �i , i+1� satisfying �Ji−1,i�� �Ji,i+1�� �Ji+1,i+2�.
Although no two such bonds can be adjacent, the correla-
tions are short range. As a consequence, the number M of
these bonds is extensive as well as their variance. In fact, M
is asymptotically distributed as a Gaussian random variable
according to the central limit theorem. Furthermore, it can be
shown �14,15� that for any continuous distribution of the Jij,
one has the remarkable property

lim
N→�

�M�
N

=
1

3
. �4�

Since Ns=2M, we obtain

lim
N→�

�ln Ns�
N

=
ln 2

3
= 0.231049. . . �5�

as indicated in Table I. Finally, given that M is Gaussian, Ns
follows a log-normal distribution at large N.

This simple example allows us to guess what happens in
other finite connectivity models. The role of the localized
domain wall should be replaced by a local cluster of spins
that can flip �16�. If there are M such clusters, the number of
inherent states will be roughly 2M; finally, if as expected M is
a Gaussian random variable at large N, then Ns will be log
normal.

B. The mean multiplicity

For all our models we find that the number Ns of inherent
structures grows exponentially with N. Earlier analytic work
�5,17–19� has established this for regular graphs �including
the complete ones�. We recover these results numerically,
extending them to scale-free graphs �see Fig. 2�.

The slope of ln�Ns� versus N is given in Table I for a
sample of models. We recall that the analytic result �5,17,18�

TABLE I. Slope of the least-square linear fit of ln�Ns� ��ln Ns�� versus N. Only statistical errors are estimated; the lower figure for k
=2 is the exact value. The fact that for the SK model the lower figure is slightly larger than the upper one is a finite size artifact reflecting
the decrease with N of the variance of ln Ns discussed in the text.

KR �k=2� KR �k=4� ER �k�=4 BA �m=2� BA �m=1� SK

Slope of ln�Ns� 0.2417�3� 0.2179�2� 0.2029�2� 0.1787�3� 0.1640�4� 0.1988�2�
Slope of �ln Ns� 0.2310490 0.2163�2� 0.1997�2� 0.1728�3� 0.1510�3� 0.2008�2�

FIG. 2. Plot of ln�Ns� versus N and associated linear fits. Dia-
monds, KR �k=2�; squares, KR �k=4�; up triangles, SK; circles,
BA �m=2�; down triangles, BA �m=1�.
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for the SK model is 0.1992¼, to be compared with
0.1988�2� read from our table. We find this agreement re-
markable and encouraging, indicating that reliable results
can be obtained from rather small systems. We also repro-
duce a qualitative result of Ref. �19�: for regular graphs the
slope decreases with increasing connectivity. �Note that we
cannot compare our figures quantitatively with the analytic
predictions of Ref. �19� because the definitions of metastable
states used are different.� In contrast, this trend with connec-
tivity is not found in inhomogeneous graphs of the BA type,
where the slope is larger for m=2 than for m=1 �m is the
number of links attached in one step of the growth process;
thus the average connectivity equals 2m up to finite size
corrections�. Note that the case m=1 produces tree networks
�that is, no loops are generated�.

It is also of interest to consider the average of ln Ns rather
than the logarithm of the average. The results for these av-
erages also show a clean linear behavior with N, and the
slopes are given in Table I. We see that in all cases, the two
values are numerically close; the potential differences will be
discussed in Sec. III D.

C. The multiplicity distribution

The exponential growth of Ns with N indicates that ln Ns
is an extensive quantity. For finite connectivity models it is
natural to guess that this “entropy” arises from localized ex-
citations �16� that are extensive in number. Indeed, starting
with a ground state, one expects to have an extensive number
of small sized clusters �say of just two spins as an example�
that can be flipped while keeping each spin parallel to its
local field. �The corresponding modified configuration then
remains an inherent structure.� Furthermore, this “gas of
clusters” should be weakly interacting. �We thus have a gen-
eralization of what happened in the ring geometry, although
it was domain walls that played the role of the localized
objects there.� This picture should hold for all finite connec-
tivity models so we focus on those first, postponing the dis-
cussion of the SK model to later.

If one can excite an extensive number of clusters and if
these interact only weakly, we expect not only the mean but
also the variance of ln Ns to be linear in N. Our numerical
data show that this is indeed the case as displayed in Fig. 3.
The fits are good, especially when the slope is large. Now

pushing the weakly interacting gas picture further, one ex-
pects a central limit theorem behavior for ln Ns. We have
thus calculated its higher order cumulants �3 and �4. Here
the errors are rather large and so only the qualitative behav-
ior with N can be extracted. The general trend is that the
scaled cumulants, i.e., �3 /�3/2 and �4 /�2, are decreasing and
probably go to zero at large N. �At N=30 they are both
�0.1.� All this indicates that the multiplicity distribution be-
comes log normal at large N:

P�Ns� 
exp�− �ln Ns − �ln Ns��2/2�2�

Ns
�2	�2

�6�

where �2 is the variance of ln Ns. This distribution is illus-
trated for the KR k=4 model in Fig. 4. Similar results are
obtained for other models �data not shown�. The k=2 case is
somewhat special since the multiplicities there are always
equal to integer powers of 2 as we saw in the ring geometry.

D. The special case of the SK model

Now we move on to the SK model which behaves some-
what differently from the other models because of its infinite
connectivity. Both ln�Ns� and �ln Ns� increase linearly with
N, as already mentioned. The difference from the other mod-
els concerns the variance of ln Ns; as shown in Fig. 3, this
variance decreases as N grows. �The line displayed there is
to emphasize the trend; the actual behavior is an inverse
power law with N.� Note that the slope of the other models is
always positive but decreases as their connectivity increases;
for instance the slope is close to zero but definitely positive
for the ER �k�=4 model.

Neglecting the higher order cumulants of ln Ns, one has

ln�Ns� = �ln Ns� +
1

2
var�ln Ns� . �7�

Thus, as N→�, we have for our finite connectivity models

1

N
�ln�Ns� − �ln Ns�� → const. �8�

This shows that in such models, the two different kinds of
averages are distinct, though their difference is numerically

FIG. 3. The plot of var�ln Ns� versus N �linear regression�.
Down triangles, BA �m=1; tree�; diamonds, KR �k=2�; circles, BA
�m=2�; stars, ER ��k�=4�; squares, KR �k=4�; up triangles, SK.

FIG. 4. The multiplicity distribution for the regular k=4 geom-
etry �histogram with bin size=100�. The ordinate is the value of Ns

for an instance. �Summed over our instances with N=30, we have a
total of 10 105 instances; note the events at large Ns arising from
just one instance.� The solid curve is the log-normal function with
the same mean and variance as in the numerical data.
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rather small. However, for the SK model, the constant on the
right hand side is zero because the variance is subextensive.
This justifies why we find �ln Ns� to be so close to ln�Ns�, in
agreement with the theoretical result that the two averages
coincide in the thermodynamic limit. This particular property
seems to be specific to the SK model because of its infinite
connectivity.

How can these results be understood? Clearly we cannot
rely on the simple picture derived from localized clusters
because in the SK model every spin is interacting with every
other one. Do low energy excitations nevertheless consist of
just a few spins? To find out, recall �20� that in the ground
state, the field hi experienced by a spin �i has a distribution
P�hi���hi� at small fields; thus small fields are rare. Because
of this, the number of two-spin excitations that will produce
an inherent structure is only O�1�! Going from 2 to k spins
increases this number; in fact it becomes exponentially large
in k. Because of this, one is driven to k=O�N� so the vast
majority of inherent structures correspond to excitations with
O�N� flipped spins, explaining why ln Ns is extensive in the
SK model. Furthermore, for such a large number of spin
flips, the detail of the Jij gets washed out. Thus one expects
very little instance to instance fluctuation of ln Ns, suggesting
correctly that var�ln Ns� is small.

Finally, we have investigated the distribution of ln Ns �see
Fig. 5�. Surprisingly, just as in the finite connectivity models,
it seems to be log normal, as indicated by the smallness of
cumulants of order 3 and 4; these cumulants are rapidly de-
creasing with increasing N and are around 0.2 at N=30. We
have no qualitative justification for this simple result.

E. The multiplicity as a function of energy

To get further insight, it is instructive to consider the de-
pendence of the number of inherent structures as a function
of their energy. We first define the scaled excitation energy
per spin 
= �E−E0� /JN where E0 denotes the ground-state
energy. Second, we introduce a binning for 
 and define D�
�
as the number of inherent structures whose �excitation� en-
ergy density is in �
 ,
+�
�, divided by �
.

Actually, it is convenient to renormalize D�
� by dividing
it further by �N, as we now explain. Let s�
� denote the
density of the “configurational entropy” so that

�Ns� =� d
�D�
�� =� d
 exp�Ns�
�� . �9�

Assume that s�
� takes its maximum value at 
=
m. Hence
at large N

�Ns� �� d
 exp�N�s0 +
1

2
s2�
 − 
m�2�� � exp�Ns0�/�N .

�10�

However, our data, especially for the SK model, indicate that
Ns increases exponentially with N, without any power pref-
actor. If so, there must be a factor �N missing in Eq. �9�, in
the relation between D�
� and exp�Ns�
��. Hence, we rede-
fine s�
� by s�
�=N−1 ln��D�
�� /�N�, which amounts to add-
ing a finite size correction. To simplify the writing we here-
after absorb the factor 1 /�N in the definition of D�
�.

In Fig. 6 we show s�
�=N−1 ln�D�
�� versus 
 for the SK
model �and in the inset for the BA �m=2� model� for N
=20,25,30 as well as our N=� extrapolation. The result of
this extrapolation is close to that shown in Fig. 2 of Ref. �5�,
where it has been calculated in the mean field approximation,
with two differences: it does not fall to zero when 
→0, and
at the maximum it overshoots by 4.5% the exact value
0.1992¼. However, our data have been collected at small N,
and there are uncertainties with our extrapolation, so the
agreement is actually pretty good. For the SK model, the
extrapolated data are very well fitted by the parabola

s�
� = 0.064 167 + 1.2582
 − 2.7173
2. �11�

This has a maximum at 
�0.23 and vanishes at 
�0.51.
An interesting quantity �independent of the normalization

of D�
�� is the ratio

R�
� =
�var�D�
��

�D�
��
. �12�

It is plotted in Fig. 7. In part �a� of that figure, we illustrate
the behavior of R�
� for the BA geometry; the ratio is either

FIG. 5. The multiplicity distribution for the SK model. The or-
dinate is an instance’s number of inherent structures �data for N
=30 and 15 607 instances�. The line is the log-normal curve with
the same mean and variance of ln Ns as in the numerical data. No-
tice that in the tails the data deviate somewhat from the curve. As
stated in the text, for SK the scaled higher order cumulants, al-
though “small,” are nevertheless about twice what they are in the
other models.

FIG. 6. The histogram of N−1 ln�D�
�� versus the excitation en-
ergy per spin 
 for the SK model at N=20 �circles�, 25 �squares�,
and 30 �diamonds�. The triangles are the result of an N→� extrapo-
lation. The bin size is 0.004 for 
�0.04 and 0.04 otherwise. Inset:
the same for the BA geometry, m=2.
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constant or increases slowly with �D�
�� �and thus with N�.
A similar behavior is observed for other finite connectivity
models. In part �b�, we show R�
� for the SK model; the ratio
is constant for the energy bin �0, 0.12� and decreasing for
larger excitation energies.

We also find that for all 
 the shape of the distribution of
D�
� is consistent with a log-normal law. If it were exactly
log-normal, one would have

R�
� = �exp��2�
�� − 1 �13�

where �2�
�=var�ln D�
��.
If R keeps decreasing as �D�→�, the distribution of the

density of inherent structures becomes more and more
peaked, leading to

lim
N→�

ln�D�
��/�ln D�
�� = 1. �14�

This is what Bray and Moore find in the SK model for scaled
excitation energies greather than 0.12, where as they claim
the “metastable states are uncorrelated” �5�. In our data the
fall of R is not as rapid as expected for a Poisson distribution,
but the qualitative trend is similar. Unfortunately, we are un-
able to determine the critical energy very precisely; we can
only state that our SK data are compatible with the results of
Ref. �5�.

IV. BARRIERS AND VALLEYS

A. Framework

The motivation for studying the scaling behavior of en-
ergy barriers separating inherent structures is well known:
barriers that grow with N suggest a frozen �spin glass phase�
at T=0 while finite barriers suggest a paramagnetic system.
Here we focus on the energy barrier between the two ground
states related by spin flip symmetry, which is expected to be
the system’s largest barrier. To go from one ground state to
the other, all spins must be flipped and so we are interested in
finding �a� the height of this barrier; �b� the appropriately
defined distance between the ground state and this barrier
state; and �c� the number of configurations that can be
reached starting from one ground state while staying below
this barrier height.

B. The barrier exponent

The energy landscape of a disordered and frustrated sys-
tem generically has many valleys and energy barriers. Stud-
ies of barriers in spin glasses have focused almost exclu-
sively on the SK case. �1� On the analytical side, Rodgers
and Moore �6� performed an analysis of free-energy barriers
near Tc and found an N1/3 scaling. �2� Numerical investiga-
tions have estimated barriers indirectly via the relaxation
times of Monte Carlo dynamics; the most recent simulations
�7� give further support to an N1/3 scaling. Very recently �21�,
a detailed study of barriers has been performed analytically
for spin glasses on random graphs, but for a Hamiltonian
involving three-spin interactions rather than the two-spin in-
teractions of Eq. �1�. In this work we shall study directly the
energy barrier scalings for our four kinds of models, finding
that the exponent depends on the nature of the underlying
graph.

The energy barrier of interest is the one encountered when
going from one ground state to its flipped counterpart. �Re-
call that our system has a global spin flip symmetry.� This
energy barrier is expected to be the largest of all barriers. We
determine it with our lid algorithm by letting the “water”
proceed from the source �one of the ground states� up to the
level given by the lid. When this level crosses the value BJ
�the barrier for the instance under consideration�, the water
will flow all the way to the other ground state. BJ is a random
variable �depends on the instance�, so we have determined its
moments and distribution as a function of N.

For each N and kind of model �KR, ER, etc.,�, we have a
numerical estimate of the distribution of BJ; define B as the
energy for which this distribution is maximum. We show in
Fig. 8 the log-log plots of B versus N for several of our
models. �A similar plot can be obtained from the mean of BJ,
but our definition of B leads to more stable results.� The
numerical values of the slopes are collected in Table II.

The errors given in Table II are statistical only. The sys-
tematic errors are likely to be more important. We do not
have them fully under control, but they can be roughly esti-
mated as follows: the value of the exponent depends on the
observable used to extract it, namely, the average of the bar-
rier height or its modal value. Comparing these different ob-
servables, we expect the systematic error on the barrier ex-
ponents to be around ±0.02. Similarly, the systematic error
attached to the valley exponents discussed in the next section
is tentatively estimated to be around ±0.05.

FIG. 7. The ratio R=��D2�− �D�2 / �D� versus �D�. �a� BA ge-
ometry: circles, 0�
�0.16; squares, 0.16�
�0.32; �b� SK ge-
ometry: circles, 0�
�0.12; squares, 0.12�
�0.24; triangles,
0.24�
�0.36.

FIG. 8. The barrier height B as a function of N. Circles, BA
�m=2�; stars, ER ��k�=4�; squares, KR �k=4�; up triangles, SK.
The ordinate for the SK points has been shifted by −0.05 to make
the figure less cluttered.
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The result for the SK model gives strong support for the
conjecture of a barrier scaling as N1/3; note how well the data
follow this scaling, starting even at such low values as N
=10. Power scaling is also very clear in the other models,
though the scalings seem to set in a bit less early. For in-
stance, our fits for KR graphs with k=4 lead to effective
slopes that decrease as the lower range in N used for the
fitting is increased; our best estimate for the exponent is then
0.244�6�, a result completely incompatible with 1/3. We thus
conclude that barrier exponents depend on the nature of the
underlying graphs. It is manifest that for the homogeneous
finite connectivity models studied here the barrier exponent
is significantly lower than for SK �a similar result is found,
e.g., for ER graphs with average degree equal to 3�. The
inhomogeneous BA models behave differently, more like the
SK model, and there is no indication in our data that such a
trend is due to finite size effects, although this possibility
cannot, of course, be totally excluded.

In contrast to the quantity Ns, we find that BJ is self-
averaging, i.e., its relative fluctuations decrease and go to
zero as N grows:

�var�BJ�
�BJ�

� N− �15�

with the exponent  ranging from about 0.14 �SK model� to
0.30 �KR k=4 model�. From such a self-averaging behavior,
one may guess that BJ is to some extent a sum of many small
barrier heights.

C. The valley exponent

Let us consider now the number of configurations that are
wetted just before the barrier is reached. Since the procedure
wets all reachable configurations in its search of the pass,
this number measures the size of the valley or, stated differ-
ently, the size of the basin of attraction of the ground state. It
turns out to depend strongly on the geometry of the model.
Thus, for example, at N=30, the average number of wet sites
is 2940 in the SK and 40 000 in the BA �m=2� model.

Each wet site represents a configuration of the system. We
observe that nearly all configurations or their associated
flipped partners whose excitation energies are lower than BJ,
the height of the barrier, get wet. This is true for all models
and says that BJ is probably as expected the largest energy
barrier in the system.

We define Nwet as the most probable number of wet con-
figurations when the lid finally reaches the barrier. �It is thus
extracted from all of our instances at a given N, just as B
was.� We find the simple scaling property

Nwet � exp�cN�� �16�

where c is a numerical constant. The value of the “valley
exponent” � is always below 1 �see Table II�. �Note that we
have also performed the analysis using the mean number of
wet configurations rather than the modal value and the re-
sults are very similar.�

Let us present a heuristic argument for why a stretched
exponential as in Eq. �16� is natural. The wet sites represent
configurations with energies differing relatively little from
the ground-state energy E0, the extreme energy of the sys-
tem, proportional to N. A simple guess is that the �microca-
nonical� entropy density s�e� vanishes as

s�e� � A�e − e0�� �17�

as e=E /N tends toward the ground-state energy density e0
=E0 /N. �Here A is a constant and � is a positive exponent.�
Then the probability that a configuration has energy density e
is

P�e� � exp�NA�e − e0��� �18�

for e tending toward e0. Using the fact that for configurations
below the energy barrier BJ, e−e0 becomes infinitesimal as
N→�, the number of wet configurations is

Nwet � �
e0

e0+B/N

P�e�de � �
0

N�

exp�AN�z/N���dz �19�

where � is the barrier exponent. For large N the integral is
dominated by the upper limit and one gets �16� with �=��
−�+1. Using our measurements of � and �, this gives values
of � ranging from about 0.3 to approximately 0.5. Related
considerations can be found in Ref. �22�.

D. Ground state to barrier state distances

The idea of our algorithm was briefly explained in Sec.
II C. Along the shortest path from the ground state to the
saddle point �pass�, a given spin can get flipped more than
once. This path has to avoid multiple obstacles and can be
quite tortuous. It is not explicitly constructed by our simple
“wetting” algorithm, which merely identifies the location of
the saddle point in the configuration space. Once this is done,
one easily finds the Hamming distance separating the ground
state and the saddle point, i.e., the barrier state. The mirror
state is then also easily identified.

The distribution of the Hamming distances separating the
ground state from the pass is shown in Fig. 9; the distribution
is the least broad for the SK model and the broadest for
regular graphs with k=3. Other models, including the BA
one, exhibit intermediate behaviors.

Detailed investigations show that just before the lid en-
ergy is reached, in almost all cases the two passes �related by
a global spin flip� are both on the boundary of the wet sites.
From this fact, we can reach a useful qualitative picture of
the energy landscape. Recall that each ground-state valley
corresponds to a connected cluster of vertices of the
N-dimensional Boolean hypercube. Generically, two barrier
configurations, related by a global spin flip symmetry, form
the “passes” where the two valleys “touch.” This is very

TABLE II. The barrier and the valley exponents. Top numbers:
slope of the least-square linear fit of ln B versus ln N. Bottom num-
bers: slope of ln ln Nwet versus ln N. Only statistical errors are
estimated.

ER �k�=4 KR �k=4� BA �m=2� SK

Barrier exponent 0.285�4� 0.244�6� 0.363�4� 0.335�3�
Valley exponent 0.781�5� 0.708�5� 0.811�4� 0.644�6�
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different from what happens in a one-dimensional energy
landscape. There, if one has two passes, then the two valleys
do not touch; instead an intermediate zone separates them. In
our systems, only on very rare occasions �at the level of
about 1 in 1000� have we found that a valley is in contact
with just one pass. Thus in the generic case, the valley to
valley barrier is associated with two passes, both in contact
with each ground-state valley.

V. SUMMARY AND CONCLUSION

Many complex systems can be represented by a compli-
cated network connecting a large number of simpler sub-
units. The knowledge of the network architecture is an im-
portant piece of information, but it does not tell much about
the system’s global behavior. Instead, it is frequently the en-
ergy landscape that is relevant for the cooperative behavior
of systems consisting of many interacting units �see Refs.
�23,24��. An interesting question is, what is the relation be-
tween the system’s behavior and its design? between the
shape of its energy landscape and the topology of its net-
work? This question motivated our investigation.

Our study focuses on spin glasses that are archetypes of
complex systems. A major conclusion of our work is that
reliable results can be obtained from quite small systems,
provided the enumeration of configurations is exhaustive: for
example, in the SK model we reproduce correctly the first
three significant digits of the quantity N−1 ln�Ns� �which has
been calculated analytically long ago�. The techniques we
use are relatively straightforward, but allow us to unveil es-
sential aspects of the energy landscape in these systems as
we now summarize.

We find that the distribution of the number of inherent
structures is log normal in all examined models. This usually
reflects the extensivity of local excitations and their low level
of correlations, a property that should hold in a variety of
other models with finite connectivity.

We further observe a simple scaling behavior with the
number of spins of the size of the ground-state basin of at-
traction and of the height of the energy barrier between the
two degenerate ground states, respectively. However, the cor-

responding exponents are not universal. For instance, the
barrier exponent in the SK model �equal to 1/3� is definitely
larger than the exponents found in all models where under-
lying graphs are homogeneous. Similar results hold for the
valley exponent. Nevertheless there is some level of univer-
sality: the exponents seem to be independent of the underly-
ing Jij distribution. For instance in the SK model, the barrier
exponent is, within the limits of our systematic error, the
same when the Jij are generated from an exponential distri-
bution and from the Gaussian distribution; we have also
checked this for the KR k=4 model, though finite size effects
there were stronger. We find this level of universality to arise
also for the valley exponent.

On the whole, the qualitative behavior of the models we
considered is very similar, with one notable exception: the
variance of ln Ns decreases with increasing N in the SK
model, while it increases in all models with finite connectiv-
ity graphs. This difference is quite essential and signals a
qualitatively different nature of this complex system, argu-
ably due to the absence of small scale excitations.

In spite of their qualitatively similar behavior, the models
are very different quantitatively. The seemingly small differ-
ences between parameters plotted in Figs. 2 and 3 translate
into large differences of multiplicity distributions. For in-
stance, the size of the basin of attraction in the BA �m=2�
model is one order of magnitude larger than in the model
where graphs are regular with degree 4, etc.

This paper is an exploratory one and many questions re-
main open. We showed in Sec. IV D that the two ground-
state valleys had a connectivity property that was nonexistent
in one-dimensional energy landscapes; it would be of interest
to understand the nature of passes between more general val-
leys in these systems. It would also be worthwhile to explore
the topology of the graph associated with the inherent struc-
tures. Such inherent networks have been constructed, for ex-
ample, for certain atomic clusters �25,26�. We would like to
see whether there is some relation between the underlying
topology of the model and the topology of its inherent net-
work. However, the nontrivial definition of the latter for a
discrete system like a spin glass requires a separate discus-
sion; this issue is beyond the scope of the present paper.
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FIG. 9. The normalized Hamming distance distribution separat-
ing the Boolean hypercube sites representing the ground state and
one or the other saddle point �for N=20�; empty circles, SK; full
circles, KR �k=3�.
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